
Exam

Quantum Field Theory I

The full set of exam questions can score up to N = 27 points. The final grade is then computed according to the
formula: Grade = 1+ N ·11

50 and then rounded to the nearest quarter point, except if the resulting grade is between
3.75 and 4, in which case the final grade is systematically rounded to 4. Therefore, an exam scoring strictly more
than 12.5 points will be graded at least 4, and an exam scoring strictly more than 22 points will get a 6.

Exercise 1

a) Given [L ] = 4 and [∂] = 1, the dimensions of all the fields is 1, [Ai] = [Bi] = [Ci] = 1, while for the
parameters we have [m2

i ] = 2 and [λ] = 1. [1 point]

b) All the Lorentz indices are suitably contracted and no explicit coordinate dependence appears in the La-
grangian: the Poincaré group is thus a symmetry.

The quadratic part of the action features invariance under independent SO(3) rotations of the three fields

Ai → R
(A)
ij Aj , Bi → R

(B)
ij Bj , Ci → R

(C)
ij Cj , with R(A), R(B) and R(C) orthogonal 3 × 3 matrices with

determinant 1. The quadratic part is also invariant under independent sign flips of the fields Ai → −Aj ,
Bi → −Bj , Ci → −Cj , which corresponds to the group Z2 × Z2 × Z2. Overall the quadratic part is thus
invariant under [SO(3) × Z2]

3 = [O(3)]3 (Notice that O(3) = SO(3) × Z2). However the last term in the
Lagrangian, the cubic, is only invariant under SO(3) rotations that are the same for the fields Ai → RijAj ,
Bi → RijBj , Ci → RijCj . This last term is invariant because,

ϵijkAiBjCk → ϵijkRilRjmRknAlBmCn = det(R)ϵlmnAlBmCn = ϵijkAiBjCk. (1)

Moreover also the full Z2×Z2×Z2 is no longer a symmetry. The only surving discrete symmetry correponds
to sign flips of pairs of fields

Ai → −Ai , Bi → −Bi , Ci → Ci

Ai → −Ai , Bi → Bi , Ci → −Ci

Ai → Ai , Bi → −Bi , Ci → −Ci

(2)

which corresponds to the group Z2 × Z2.

We thus conclude that the internal symmetry of the system is SO(3)× Z2 × Z2. Let us emphasize that this
is an internal symmetry group, which does not entail any transformation of the spacetime coordinates xµ.
It thus has nothing to do with the spacial rotation subgroup of Poincaré. [2 points]

Here, and in other points, the detailed discussion of the discrete symmetries is not required to reach full
score. For pedagogical reasons we already discussed the symmetries of the quadratic terms here, rather than
at point c) where it belongs.

c) If we set λ → 0, the Lagrangian reduces to the quadratic part. According to the discussion above the
Lagrangian is thus invariant under three independent rotations for the A, B, and C

Ai → R
(A)
ij Aj , Bi → R

(B)
ij Bj , Ci → R

(C)
ij Cj . (3)

and under the three independent Z2. Thus, for λ = 0 the symmetry is extended to [O(3)]3. [2 points]

d) We now add all possible terms invariant under SO(3) (we ignore the discrete symmetries here). We make
use of the fact that SO(3) has two, and only two, invariant tensors: ϵijk and δij .

Let’s first use the Kroenecker delta to build invariants. Since all the fields have dimension 1 and they
transform under the same rotation, all possible contractions of the form ϕiψi with ϕ and ψ each being either
A,B or C will be invariant. With this, apart from the terms that already appear in the Lagrangian, we can
have mass terms with mixed fields,

AiBi, BiCi, AiCi (4)



and also mixed kinetic terms,
∂µAi∂µBi, ∂

µBi∂µCi, ∂
µAi∂µCi. (5)

In the same way, we can have all possible pairwise contractions of the fields (these are dimension 4 operators)

(AiAi)(BjBj), (AiAi)(CjCj), (BiBi)(CjCj), (AiAi)
2, (BiBi)

2, (CiCi)
2, (AiBi)

2, (AiCi)
2, (BiCi)

2,

(AiBi)(AjCj), (AiAi)(BjCj), (BiBi)(AjCj), (AiBi)(BjCj), (CiCi)(AjBj), (CiAi)(CjBj).
(6)

All of these terms come with different and independent couplings.

If we imposed also the discrete symmetries, not all terms are invariant. For example the additional mixed
mass terms in equation 4 are invariant only under a Z2 subgroup of Z2 × Z2.

We can now consider terms built using the Levi-Civita tensor as well. First, there are no additional terms
that can be built using one ϵijk, as any combination with two identical fields such as

ϵijkAiAjBk = −ϵjikAiAjBk = −ϵijkAiAjBk = 0 (7)

vanishes by the antisymmetry of the Levi-Civita tensor. One may also wonder about terms with two epsilon
tensors like, ϵijkϵilmAjBkClBm. These terms are already included since,

ϵijkϵilm = δjlδkm − δjmδkl. (8)

There is thus no new term with dimension less than or equal to 4 that can be built with ϵijk. [2 points]

e) Under SO(3), Ai → RijAj , where R is a rotation matrix, or infinitesimally,

Ai → Ai + ϵijkAjθk = Ai +∆A
ikθk, (9)

where θk are small angles. The spacetime coordinates xµ do not transform under the symmetry. Thus, the
Noether current is

Jµ
k =

∂L
∂(∂µAi)

∆A
ik +

∂L
∂(∂µBi)

∆B
ik +

∂L
∂(∂µCi)

∆C
ik =

= ϵijk((∂
µAi)Aj + (∂µBi)Bj + (∂µCi)Cj),

(10)

which is conserved by the equations of motion. Now the associated charges are,

Qk =

∫
d3xJ0

k = ϵijk

∫
d3x(ȦiAj + ḂiBj + ĊiCj), (11)

where Ȧi means the temporal derivative of Ai. [3 points]

f) The term ∆L1 is not invariant under the SO(3) symmetry. To see that, one can consider for example an

infinitesimal transformation with parameter θ⃗ = (θ1, 0, 0) as defined in equation 9. Moreover, Z2 × Z2 is
broken down to Z2 : Ai → −Ai, Bi → −Bi, Ci → Ci.

However, this term is still invariant under a subgroup of SO(3): SO(2) transformations that act only on the
components 1 and 2 of the fields (i.e rotations in the (1, 2) plane in field space):

Ai → RijAj , Bi → RijBj , Ci → RijCj , with importantly i, j = 1, 2 ̸= 3. (12)

where R is a 2× 2 orthogonal matrix with determinant 1. Indeed,

A1B2 −A2B1 = ϵijAiBj → ϵijRikRjlAkBl = det(R)ϵijAiBj (13)

where ϵij is the two dimensional Levi-Civita tensor and we used that det(R) = 1. The rest of the Lagrangian
is of course invariant under these transformations as they form a subgroup of the original SO(3) symmetry.

If we add ∆L2 again we break SO(3) because this term is clearly not invariant under SO(3) rotations and
also we break again one Z2. The SO(2) transformations just described above also remain unbroken in this
case as C3 is invariant under rotations in the (1, 2) plane in field space. ∆L2 also preserves the same residual
Z2 as ∆L1 : Ai → −Ai, Bi → −Bi, Ci → Ci.

If we add both terms, the situation is the same and the SO(3) symmetry is broken down to SO(2)× Z2.
[2 points].

2



Exercise 2

• Theory Question [4 points]

a) The Hamiltonian is hermitian:

H† =

∫
d3x (ψ†

α(i∇ · σ⃗)αβψβ)
† +

m

2
(ψ†

αψ
†
β)

†ϵαβ − m

2
(ψαψβ)

†ϵαβ

=

∫
d3x ((i∇ · σ⃗)αβψβ)

†ψα +
m

2
ψβψαϵ

αβ − m

2
ψ†
βψ

†
αϵ

αβ

=

∫
d3x ((−i∇kψ

†
β)(σ

k)βαψα +
m

2
ψβψαϵ

αβ − m

2
ψ†
βψ

†
αϵ

αβ

=

∫
d3x (ψβ)

†iσ⃗βα ·∇ψα − m

2
ψβψαϵ

βα +
m

2
ψ†
βψ

†
αϵ

βα

=

∫
d3xψ†

α(i∇ · σ⃗)αβψβ +
m

2
ψ†
αψ

†
βϵ

αβ − m

2
ψαψβϵ

αβ = H

(14)

where in the second to third line we used the hermiticity of the Pauli matrices and also wrote explicitly the
indices of the spacial derivatives. In the third to fourth line we used integration by parts in the first term.
In the last line we relabelled the indices. [2 points]

b) For the time evolution equation, we use the following property: [AB,C] = A{B,C} − {A,C}B to write the
commutator in terms of anticommutators:

ψ̇γ(y) ≡ i[H,ψγ(y)]

= i

[∫
d3xψ†

α(x)(i∇ · σ⃗)αβψβ(x) +
m

2
ψ†
α(x)ψ

†
β(x)ϵ

αβ − m

2
ψα(x)ψβ(x)ϵ

αβ , ψγ(y)

]
= i

∫
d3x

(
−{ψ†

α(x), ψγ(y)}(i∇ · σ⃗)αβψβ − m

2
{ψ†

α(x), ψγ(y)}ψ†
βϵ

αβ − m

2
ψ†
α{ψ

†
β(x), ψγ(y)}ϵαβ

)
= (∇ · σ⃗)γβψβ − imψ†

βϵ
γβ

(15)

Or rearranging the terms
i(σ̄µ∂µψ)α = mϵαβψ

†
β . (16)

[3 points]

c) Recall that

dΩp =
d3p

(2π)32ωp
(17)

and under the transformation p → p′ = −p, we have that ωp′ = ωp which leaves the measur invariant:
dΩp′ = dΩp. So, overall ∫

dΩp f(p) =

∫
dΩp′ f(−p′) (18)

The expression for ψ(t,x) can be divided into two terms

ψ(t,x) =

∫
dΩp

(
eipx−iωptξ+(p) + eipx+iωptξ−(p)

)
=

∫
dΩp

(
e−ip·xξ+(p) + eipx+iωptξ−(p)

)
(19)

and the first term is already in the form we want. Then, by performing the change of integration variable
p′ = −p on the second term it reads∫

dΩp′

(
e−ip′x+iωp′ tξ−(−p′)

)
=

∫
dΩp

(
e−ipx+iωptξ−(−p)

)
=

∫
dΩp

(
eip·xξ−(−p)

)
(20)

So, putting everything together

ψ(t,x) =

∫
dΩp

(
e−ip·xξ+(p) + eip·xξ−(−p)

)
(21)

[1 point]
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d) In all that follows ξ†α ≡ ξ∗α.

From eq. 21 we have

iσ̄µ∂µψ(t,x) = σ̄µ

∫
dΩp(pµe

−ip·xξ+(p)− pµe
ip·xξ−(−p)). (22)

One also easily sees that

mϵαβψ
†
β(t,x) =

∫
dΩp

(
eip·xmϵαβξ

†
+,β(p) + e−ip·xmϵαβξ

†
−,β(−p)

)
(23)

By equating the terms proportional to e−ip·x in equation 22 and 23 we thus get

σ̄µpµξ+(p) = mϵξ†−(−p), (24)

Doing the same thing for the terms proportional to eip·x, we get a second equation

−pµσ̄µξ−(−p) = mϵξ†+(p). (25)

To get it in the form asked in the question, we take the complex conjugate of this equation:

pµ(σ̄
µ)∗αβϵβγϵγδξ

†
−,δ(−p) = mϵαβξ+,β(p). (26)

where we introduced ϵ2 = −1 on the left hand side. Multiplying on the left by ϵ and using

ϵ−1(σ̄µ)∗ϵ = −ϵ(σ̄µ)∗ϵ = σµ, (27)

we get
σµpµϵξ

∗
−(−p) = mξ+(p). (28)

[2 points]

e) By eqs.24 and 28 the 4-spinor Ξ satisfies the Dirac equation (/p−m)Ξ = 0 since

γµpµΞ−mΞ =

(
0 σµpµ

σ̄µpµ 0

)(
ξ+(p)
ϵξ∗−(−p)

)
−m

(
ξ+(p)
ϵξ∗−(−p)

)
=

(
σµpµϵξ

∗
−(−p)

σ̄µpµξ+(p)

)
−m

(
ξ+(p)
ϵξ∗−(−p)

)
= 0 (29)

[1 points]

f) Recall that the general solution of (/p−m)u = 0 has the form

u =

(√
p · σξ(p)√
p · σ̄ξ(p)

)
(30)

with ξ(p) a generic bispinor. Equating the above form of the general solution with the expression for Ξ in
eq. 29 we then have

ξ+(p) =
√
p · σξ(p), ϵξ∗−(−p) =

√
p · σ̄ξ(p) . (31)

The first of these equations already proves one of the identities. For the second, using ϵ−1σiϵ = −σ∗
i and the

explicit expressions for p · σ̄ and p · σ

√
p · σ̄ =

1

2

(√
ωp +m+

p · σ
√
ωp +m

)
,

√
p · σ =

1

2

(√
ωp +m− p · σ

√
ωp +m

)
(32)

we get

ξ∗−(−p) = ϵ−1√p · σ̄ξ(p) = −ϵ−1√p · σ̄ϵ2ξ(p) = −1

2

(√
ωp +m ϵ−1ϵ+

piϵ
−1σiϵ√
ωp +m

)
ϵξ(p)

= −1

2

(√
ωp +m − piσ

∗
i√

ωp +m

)
ϵξ(p)

(33)

and taking the complex conjugate

ξ−(−p) = −1

2

(√
ωp +m − piσi√

ωp +m

)
ϵ∗ξ∗(p) = −√

p · σϵξ∗(p) (34)

[2 points]
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